解题思路:船既随水向下游运动,又相对于水向对岸行驶,根据船相对于水的速度与水流速度的比较,分析船能否到达正对岸.假设船头的指向与河岸的夹角为α,运用速度的分解求出船垂直于河岸方向的分速度,分析什么条件时渡河的时间最短,并进行求解.运用作图法,根据三角形定则分析什么条件下船的合速度与河岸夹角最大,则船登陆的地点离船出发点的最小距离,再由几何知识求解最小距离.
设船在静水中的航速为v1,水流的速度v2.
A、由题,船在静水中的航速小于水流的速度,根据平行四边形定则可知,船的合速度方向不可能垂直于河岸,则
船不能到达正对岸.故AB错误;
C、将小船的速度分解为垂直河岸和沿河岸方向,在垂直于河岸的方向上,河宽一定,当在该方向上的速度最大时,渡河时间最短,所以当船头方向垂直河岸,在该方向上的速度等于静水航速,时间最短,为tmin=
d
v1=100s.故C错误;D正确;
故选:D
点评:
本题考点: 运动的合成和分解.
考点点评: 本题是小船渡河问题,关键是运用运动的合成与分解作出速度分解或合成图,分析最短时间或最短位移渡河的条件.