lim (x→0)[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]求极限

1个回答

  • lim (x→0)[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]=0

    是不是x-->∞

    [√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]

    ={[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]}/1

    分子分母同时乘以[√﹙x²﹢x+1﹚]+[√﹙x²-x+1﹚]

    =[(x²+x+1)-(x²-x+1)/[√﹙x²﹢x+1﹚]+[√﹙x²-x+1﹚]

    =2x/[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]

    ∴ lim (x→∞)[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]

    =lim (x→∞)2x/[√﹙x²﹢x+1﹚]+[√﹙x²-x+1﹚]

    =2 /2

    =1