因为向量BP=3*向量PA
所以向量CP-CB=3*(CA-CP)
即向量4CP=3*CA+CB
即向量CP=3/4*CA+1/4*CB
又向量AB=CB-CA
则向量CP*向量AB
=(3/4*CA+1/4*CB)*(CB-CA)
=3/4*(CA*CB)-3/4*|CA|²+1/4*|CB|²-1/4*(CB*CA)
=1/2*(CA*CB)-3/4*|CA|²+1/4*|CB|²
因为|向量CA|=4,|向量CB|=2,向量CA与向量CB的夹角为60°
则向量CA*向量CB=|CA|*|CB|*cos60°=4*2*1/2=4
所以向量CP*向量AB=1/2 *4 -3/4 *16+1/4 *4=2-12+1=-9