(1)an=(1/4)^n
化简后bn=3n-2是等差数列
(2)cn=(1/4)^nx(3n-2)
Sn=1/4x1+(1/4)^2x4+(1/4)^3x7+……+(1/4)^nx(3n-2) ①
1/4Sn=(1/4)^2x1+(1/4)^3x4+(1/4)^4x7+……+(1/4)^(n+1)x(3n-2)②
①-②=3/4Sn=1/4+3[(1/4)^2+(1/4)^3+(1/4)^4+……+(1/4)^n)]-(1/4)^(n+1)x(3n-2)
3/4Sn=1/2-(3n+2)/[4^(n+1)]
Sn=[2-(3n+2)/4^n]/3
(3)cn=(1/4)^nx(3n-2)
令函数y=(1/4)^nx(3n-2)
n=1,y=1/4
n=2,y=1/4
n=3,y=7/64
n=4,y=5/128
……
y′=[12n²-8n-3]x(1/4)^n
当y′≥0时,即12n²-8n-3≥0,求得n≥1/3时递增,又n≥1,即cn=(1/4)^nx(3n-2)递增
楼主题目有问题,应该是“cn≥m²/4+m-1对一切正整数n恒成立,求实数m的取值范围”
cn最小值为1/4,即m²+4m-5≤0恒成立m∈(-5,1)