求证:1/(a+b)+1/(a+2b)+.+1/(a+nb)

1个回答

  • ∵[(a+b+……+m)/n]^2≤(aa+bb+……+mm)/n(正数均值的平方小于或等于他们平方的均值)

    ∴(a+b+……+m)^2≤n(aa+bb+……+mm)

    运用这个重要不等式、

    ∴[1/(a+b)+1/(a+2b)+……+1/(a+nb)]^2<n{[1/(a+b)]^2+[1/(a+2b)]^2+……+[1/(a+nb)]^2}

    <n{1/[(a+1/2b)(a+b)]+1/(a+b)(a+2b)+……+ 1/[a+(n-1)b](a+nb)}

    <(n/b)*{1/(a+1/2b)-1/(a+b)+1/(a+b)-1/(a+2b)+

    1/(a+3b)-1/(a+4b)+……+1/[a+(n-1)b]-1/(a+nb)}

    <(n/b)*{1/(a+1/2b)-1/(a+nb)}

    <(n/b)*{1/(a+1/2b)-1/(a+nb+1/2b)}

    =(n/b)*{nb/[(a+1/2b)(a+nb+1/2b)]

    =nn/[(a+1/2b)(a+nb+1/2b)]

    <nn/{(a+1/2b)[a+(n+1)/2b)]}

    即、[1/(a+b)+1/(a+2b)+……+1/(a+nb)]^2

    <nn/{(a+1/2b)[a+(n+1)/2b)]}

    开方即得结果,