因为(p+q+r)^2≤3(p^2+q^2+r^2)
设:
p=√3a+2,
q=√3b+2,
r=√3c+2,
则(√3a+2+ √3b+2 +√3c+2)^2≤3*(3a+2+3b+2+3c+2)=27,
所以√3a+2+ √3b+2 +√3c+2
因为(p+q+r)^2≤3(p^2+q^2+r^2)
设:
p=√3a+2,
q=√3b+2,
r=√3c+2,
则(√3a+2+ √3b+2 +√3c+2)^2≤3*(3a+2+3b+2+3c+2)=27,
所以√3a+2+ √3b+2 +√3c+2