由已知得 |OA|=2 ,|OB|=1 ,因此 OA*OB=|OA|*|OB|cosa=2cosa ,
而 PQ^2=(OQ-OP)^2=[(1-t)OB-tOA]^2
=(1-t)^2*OB^2+t^2*OA^2-2t(1-t)OA*OB
=(1-t)^2+4t^2-4t(1-t)cosa
=(5+4cosa)t^2+(-2-4cosa)t+1 ,
当上式取最小值时,t0=(1+2cosa)/(5+4cosa) ,
根据题意,0
由已知得 |OA|=2 ,|OB|=1 ,因此 OA*OB=|OA|*|OB|cosa=2cosa ,
而 PQ^2=(OQ-OP)^2=[(1-t)OB-tOA]^2
=(1-t)^2*OB^2+t^2*OA^2-2t(1-t)OA*OB
=(1-t)^2+4t^2-4t(1-t)cosa
=(5+4cosa)t^2+(-2-4cosa)t+1 ,
当上式取最小值时,t0=(1+2cosa)/(5+4cosa) ,
根据题意,0