在计算“1×2+2×3+…+n(n+1)”时,先改写第k项:k(k+1)=[1/3][k(k+1)(k+2)-(k-1)

1个回答

  • 解题思路:(1)根据已知中给出的在计算“1×2+2×3+…+n(n+1)”时化简思路,对1×2×3+2×3×4+…+n(n+1)(n+2)的计算结果进行化简,处理的方法就是类比k(k+1)=[1/3][k(k+1)(k+2)-(k-1)k(k+1)],将n(n+1)(n+2)进行合理的分解.

    (2)直接利用数学归纳法的证明步骤,先证明n=1时,结论成立,再设当n=k(k∈N*)时,等式成立,利用假设证明n=k+1时,等式成立即可..

    (1)∵n(n+1)(n+2)=14[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]∴1×2×3=14(1×2×3×4-0×1×2×3)2×3×4=14(2×3×4×5-1×2×3×4)…n(n+1)(n+2)=14[n(n+1)(n+2)(n+3)-(n-1)n(n+...

    点评:

    本题考点: 数学归纳法;类比推理.

    考点点评: 类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).(2)考查数学归纳法证明等式问题,证题的关键是利用归纳假设证明n=k+1时,等式成立,属于中档题.