这个固定值为1.
因为:
(mn+m-n^2-n)/(n^2-1)=[(n+1)*(m-n)]/[(n+1)*(n-1)]=(m-n)/(n-1);
(m^2-1)/(m^2+m-mn-n)=[(m+1)*(m-1)]/[(m+1)*(m-n)]=(m-1)/(m-n).
所以:
[(mn+m-n^2-n)/(n^2-1)]*[(m^2-1)/(m^2+m-mn-n)]*[(n-1)/(m-1)]
=[(m-n)/(n-1)]*[(m-1)/(m-n)]*[(n-1)/(m-1)]=[(m-n)*(m-1)*(n-1)]/[(n-1)*(m-n)*(m-1)]=1