1.∵x²+y²≥2|xy|
∴0≤|(x+y)/(x²+y²-xy)|=|x+y|/|x²+y²-xy|≤|x+y|/(x²+y²-|xy|)≤|x+y|/|xy|≤1/|x|+1/|y|
且lim(x,y->+∞)(1/|x|+1/|y|)=0
故有lim(x,y->+∞)[(x+y)/(x²+y²-xy)]=0
2.∵0≤(|x|+|y|)/(x²+y²)=|x|/(x²+y²)+|y|/(x²+y²)≤|x|/x²+|y|/y²=1/|x|+1/|y|
且lim(x,y->+∞)(1/|x|+1/|y|)=0
∴lim(x,y->+∞)[(|x|+|y|)/(x²+y²)]=0