定义域
由1/x可知x不等于0
由(1+x)/(1-x)可知x不等于1 且x小于1或大于-1
所以x属于(-1,0)和(0,1)
奇偶性
设x(0,1)
f(-X)=-1/x-log2为底(1-x)/(1+x)
=-1/x-log2为底[(1+x)/(1-x)]的-1次方=)
=-1/x+log2为底[(1+x)/(1-x)]
=-F(X)
所以为偶函数
单调性设1>X2>X1>0
F(X2)-F(X1)=1/X2-1/X1-{LOG2[(1+X1)(1-X2)/(1+X2)(1-X1)]}
分析可得[(1+X1)(1-X2)/(1+X2)(1-X1)>0
所以-{LOG2[(1+X1)(1-X2)/(1+X2)(1-X1)]}