∫(-2,3)x|x|dx
f(x)=x|x|为奇函数,在(-2,2)范围积分值为0
∴
∫(-2,3)x根号|x|dx
=0+∫(2,3)x^(3/2)dx
=2/5*x^(5/2)|(2,3)
=2/5*[3^(5/2)-2^(5/2)]
=2/5*(9根号3-4根号2)
∫(-2,3)x|x|dx
f(x)=x|x|为奇函数,在(-2,2)范围积分值为0
∴
∫(-2,3)x根号|x|dx
=0+∫(2,3)x^(3/2)dx
=2/5*x^(5/2)|(2,3)
=2/5*[3^(5/2)-2^(5/2)]
=2/5*(9根号3-4根号2)