题1,
a(n) = a+ (n-1)d.
s(n) = na + n(n-1)d/2 = n[a + (n-1)d/2].
-a(m) = -a - (m-1)d < a(1) = a,
0 < 2a + (m-1)d = 2[a + (m-1)d/2].
s(m) = m[a + (m-1)d/2] >0.
a(1) = a < -a(m+1) = -a - md,
0 > 2a + md = 2[a + md/2]
s(m+1) = (m+1)[a + md/2] < 0.
答案:A.s(m)>0且s(m+1)