解题思路:1.分段求出单调区间的值域,2.讨论b的取值
当0≤x≤3时,f(x)=2x-x²,对称轴为直线x=1,
∴单调增区间为[0,1],值域为[0,1];
单调减区间为[1,3],值域为[-3,1];
当-2≤x≤0时,f(x)=x²+6x,对称轴为直线x=-3,
∴单调增区间为[-2,0],值域为[-8,0];
下面讨论b的取值:
①当b1时,f(x)=b无解;
②当-8≤x③当-3≤b<1时,f(x)=b有二解.
当然,这个题的简便解法还是“数形结合”,画出图像就好解多了
解题思路:1.分段求出单调区间的值域,2.讨论b的取值
当0≤x≤3时,f(x)=2x-x²,对称轴为直线x=1,
∴单调增区间为[0,1],值域为[0,1];
单调减区间为[1,3],值域为[-3,1];
当-2≤x≤0时,f(x)=x²+6x,对称轴为直线x=-3,
∴单调增区间为[-2,0],值域为[-8,0];
下面讨论b的取值:
①当b1时,f(x)=b无解;
②当-8≤x③当-3≤b<1时,f(x)=b有二解.
当然,这个题的简便解法还是“数形结合”,画出图像就好解多了