解取AD的中点为T
连接TN,因为N为CD的中点所以TN=1/2AC,AT=1/2AD
又M为AB中点有AM=1/2AB,
G为MN中点有NG=1/2NM
所以得AG=AN+NG=AN+1/2NM=AN+1/2(NA+AM)=1/2AN+1/2AM=1/2(AT+TN)+1/2*1/2AB
=1/2(1/2AD+1/2AC)+1/4AB=1/4(AB+AC+AD)
解取AD的中点为T
连接TN,因为N为CD的中点所以TN=1/2AC,AT=1/2AD
又M为AB中点有AM=1/2AB,
G为MN中点有NG=1/2NM
所以得AG=AN+NG=AN+1/2NM=AN+1/2(NA+AM)=1/2AN+1/2AM=1/2(AT+TN)+1/2*1/2AB
=1/2(1/2AD+1/2AC)+1/4AB=1/4(AB+AC+AD)