解题思路:首先假设乙单独做需要x天,则甲单独完成需要(x-15)天,得出两人的工作效率,进而根据甲单独先工作10天,再由乙单独工作15天,就可完成这项工作的[2/3],得出等式求出即可.
设乙单独做需要x天,则甲单独完成需要(x-15)天,由题意得:
[10/x−15]+[15/x]=[2/3],
解得:x1=45,x2=7.5(不合题意舍去),
经检验得出;x=45是原方程的根,
故甲单独完成需要45-15=30(天)
答:甲、乙两人单独完成这项工作各需30天、45天.
点评:
本题考点: 分式方程的应用.
考点点评: 此题主要考查了分式方程的应用,解答此题的关键是确定单位“1”,重点是求甲、乙的工作效率和.