由原式可知
cosb^2=sina-3/2(sina^2)
所以
sinb^2=1-cosb^2=1-sina+3/2(sina^2)
=3/2(sina^2)-sina+1
所以所求
sina^2+sinb^2
=sina^2+3/2sina^2-sina+1
=5/2sina^2-sina+1
=5/2{[sina-(1/5)]^2}+1
所以原式属于
[1,23/5]
由原式可知
cosb^2=sina-3/2(sina^2)
所以
sinb^2=1-cosb^2=1-sina+3/2(sina^2)
=3/2(sina^2)-sina+1
所以所求
sina^2+sinb^2
=sina^2+3/2sina^2-sina+1
=5/2sina^2-sina+1
=5/2{[sina-(1/5)]^2}+1
所以原式属于
[1,23/5]