在DC上截取DE=DB,连结AE
∵AD⊥BC
∴∠ADB=∠ADC=90°
∵AD=AD,BD=DE
∴⊿ADB≌⊿ADE﹙SAS﹚
∴AB=AE,∠B=∠AED
∵CD=DE+EC=AB+BD
∴CE=AB=AE
∴∠C=∠CAE
∵∠AED=∠C+∠CAE
∴∠AED=2∠C
∵∠B=∠AED
∴∠B=2∠C
在DC上截取DE=DB,连结AE
∵AD⊥BC
∴∠ADB=∠ADC=90°
∵AD=AD,BD=DE
∴⊿ADB≌⊿ADE﹙SAS﹚
∴AB=AE,∠B=∠AED
∵CD=DE+EC=AB+BD
∴CE=AB=AE
∴∠C=∠CAE
∵∠AED=∠C+∠CAE
∴∠AED=2∠C
∵∠B=∠AED
∴∠B=2∠C