解1由tanB=根号3
得B=60°
又有cosC=1/3,
即sinC=2√2/3
由正弦定理知
b/sinB=AB/sinC
即3√6/(√3/2)=AB/(2√2/3)
解得AB=8
2又因为
sinA=sin(C+B)
=sinBcosC+cosBsinC
=√3/2*1/3+1/2*2√2/3
=(√3+2√2)/6
即SΔABC=1/2bcsinA
=1/2*3√6*8*(√3+2√2)/6
=2√6(√3+2√2)
=6√2+8√3
解1由tanB=根号3
得B=60°
又有cosC=1/3,
即sinC=2√2/3
由正弦定理知
b/sinB=AB/sinC
即3√6/(√3/2)=AB/(2√2/3)
解得AB=8
2又因为
sinA=sin(C+B)
=sinBcosC+cosBsinC
=√3/2*1/3+1/2*2√2/3
=(√3+2√2)/6
即SΔABC=1/2bcsinA
=1/2*3√6*8*(√3+2√2)/6
=2√6(√3+2√2)
=6√2+8√3