已知两条射线OA、OB的方程分别为y=根号3x和y=-根号3x(x>=0),动点P在角AOB内部,作PM垂直OA,PN垂

1个回答

  • ∵OA、OB的方程分别为y=根号3x和y=-根号3x(x>=0)

    又:tanπ/3=根号3

    ∴OA,OP与x轴的夹角分别为π/3,-π/3

    连接OP

    设OP = r,OP与x轴夹角为α,α∈【-π/3,π/3】

    ∠MOP = π/3-α

    ∠MOP = -π/3+α

    OM = OP cos(π/3-α)

    ON = OP cos(-π/3+α)

    SOMPN = S△OMP + S△OPN

    = | 1/2 *OM*OP*sin(π/3-α) | + | 1/2 *ON*OP*sin(-π/3+α) | 【| | 是绝对值】

    = | 1/2 *OP cos(π/3-α)*OP*sin(π/3-α) | + | 1/2 *OP cos(-π/3+α)*OP*sin(-π/3+α) |

    = | 1/4 *OP^2*sin(2π/3-2α) | + | 1/4 *OP^2 sin(-2π/3+2α) |

    = 1/4 r^2 { | sin(2π/3-2α) | + | sin(-2π/3+2α) | }

    = 1/4 r^2 { |- sin[-(2π/3-2α) | + | sin(-2π/3+2α) | }

    = 1/4 r^2 { | sin(2α-2π/3) | + | sin(2α-2π/3) | }

    = 1/4 r^2 * 2 | sin(2α-2π/3) |

    = 1/2r^2 * | sin(2α-2π/3) |

    = 1/2r^2 * | sin(2α)cos(2π/3)-cos(2α)sin(2π/3) |

    = 1/2r^2 * | sin(2α)(-1/2)-cos(2α)*根号3/2 |

    = 1/4 r^2 | sin2α+根号3cos2α |

    = 1/4 | 2rsinα*rcosα+根号3*(rcosα)^2-根号3*(rsinα)^2 | = 根号3

    将rcosα=x,rsinα=y代入上式得:

    1/4 |2xy+根号3 x^2 - 根号3 y^2 | = 根号3

    两边同乘以4根号3:

    | 3x^2 + 2根号3 xy -3y^2| = 12