f(x)=x(2^x+1/a+1/b)
f(2)=5/3
即:
(5/3)[2^(5/3)+1/a+1/b]=5/3
2^(5/3)+1/a+1/b=1
32^(1/3)+1/a+1/b=1
1/a+1/b=1-32^(1/3)
所以,所求解析式为:
f(x)=x[2^x+1-32^(1/3)]
f(x)=x(2^x+1/a+1/b)
f(2)=5/3
即:
(5/3)[2^(5/3)+1/a+1/b]=5/3
2^(5/3)+1/a+1/b=1
32^(1/3)+1/a+1/b=1
1/a+1/b=1-32^(1/3)
所以,所求解析式为:
f(x)=x[2^x+1-32^(1/3)]