证明:设三角形ABC,中线为AD,延长AD到E 使AD=DE,连EC
∵BD=CD
AD=DE
∠AEB=∠CED ∴∧ABD≌∧CED
∴EC=AB (1)
∴∠DEC=∠BAE
∵∠BAD=∠CAD ∴∠DEC=∠DAC
∴CE=AC (2) ∴AB=AC
证明:设三角形ABC,中线为AD,延长AD到E 使AD=DE,连EC
∵BD=CD
AD=DE
∠AEB=∠CED ∴∧ABD≌∧CED
∴EC=AB (1)
∴∠DEC=∠BAE
∵∠BAD=∠CAD ∴∠DEC=∠DAC
∴CE=AC (2) ∴AB=AC