cosB=4/5,∴ sinB= 3/5 sinC= sin(A+B) = sinAcosB+ cosAsinB = sin45° *(4/5) + cos45° *(3/5) = 4√2/5 根据正弦定理,BC/sinA= AC/sinB 所以AC= BCsinB/sinA = 6√2 所以S▲= (1/2)AC*BC*sinC= 48
记得采纳啊
cosB=4/5,∴ sinB= 3/5 sinC= sin(A+B) = sinAcosB+ cosAsinB = sin45° *(4/5) + cos45° *(3/5) = 4√2/5 根据正弦定理,BC/sinA= AC/sinB 所以AC= BCsinB/sinA = 6√2 所以S▲= (1/2)AC*BC*sinC= 48
记得采纳啊