设AB=a EF=根号(EB²+BF²)=根号(EB²+BC²+CF²)=[a根号(6)]/2
1.设DA、DC、DD1为X轴,y轴,z轴 A(a,0,0),E(a,a,a/2),D(0,0,0),F(0,a/2,0),D1(0,0,a)
则向量D1F=(0,0.5a,-a),DA=(a,0,0),AE=(0,a,0.5a)
D1F*DA=0*a+0.5a*0-a*0=0,D1F*AE=0*0+0.5a*a-a*0.5a=0
所以 D1F⊥DA,D1F⊥AE 所以 D1F⊥平面ADE
2.B1(a,a,a),C(0,a,0) C B1=(a,0,a) ,AE=(0,a,0.5a)
B1C*AE=0.5a²,|CB1|=a根号(2),|AE|=a根号(5)/2
cosθ=0.5a²/(a根号(2)*a根号(5)/2)=1/根号(10)=根号(10)/10