(1)等腰三角形有3个:△ABC,△ABD,△ADC
证明:∵AC=BC
∴△ABC是等腰三角形
∴∠B=∠BAC
∵∠B︰∠C=2︰1
∠B+∠BAC+∠C=180°
∴∠B=∠BAC=72°,∠C=36°
∵∠BAD=∠DAC=∠BAC=36°
∴∠B=∠ADB=72°, ∠DAC=∠C=36°
∴△ABD和△ADC是等腰三角形
(2)方法1:在AC上截取AE=AB,连接DE
又∠BAD=∠DAE,AD=AD
∴△ABD≌△ADE
∴∠AED=∠B , BD=DE
∵AB+BD=AC ∴BD=EC ∴DE=EC
∴∠EDC=∠C
∴∠B=∠AED=∠EDC+∠C=2∠C
即∠B︰∠C=2︰1
方法2:延长AB到E,使AE=AC连接DE 证明△ADE≌△ADC 再类似证明得到∠B=2∠AED=2∠C 利用“截长法”或“补短法”添加辅助线,将 AC-AB或AB+BD转化成一条线段