解题思路:(1)△CBE可以看成是由△CDQ旋转得到的.
(2)易知AQ=1-DQ=1-BE,AP=1-BP,又有△APQ的周长为2,可求出PQ=PE.
(3)根据SSS判定△PCQ≌△PCE.
(4)利用△PCQ≌△PCE得出∠PCQ=∠PCE,又有∠BCE=∠QCD,得出∠PCQ的度数是∠DCB度数的一半.
(1)△CBE可以看成是由△CDQ沿逆时针旋转90°得到的.
(2)∵AQ=1-DQ=1-BE,AP=1-BP,
又∵AP+AQ+PQ=2,
∴1-BE+1-BP+PQ=2,即2-PE+PQ=2,
∴PE=PQ.
(3)∵PE=PQ,QC=EC,PC=PC,
∴△PCQ≌△PCE(SSS);
(4)∵△PCQ≌△PCE,
∴∠PCQ=∠PCE,
又∵∠BCE=∠QCD,
∴∠QCD+∠PCB=∠PCQ,
又∵∠DCB=90°,
∴∠PCQ=[1/2]×90°=45°.
点评:
本题考点: 旋转的性质;全等三角形的判定与性质;正方形的性质.
考点点评: 本题考查了图形的旋转、全等三角形的判定、全等三角形的性质、正方形的性质等知识.