分析:
(1)令x=y=0,代入f(x)•f(y)=f(x+y)即可得到f(0)的方程,解之即可求得f(0),再有x=x2+x2,即可证得对任意的x∈R,有f(x)>0;
(2)设x1,x2∈R且x1<x2,利用定义法作差,整理后即可证得差的符号,进而由定义得出函数的单调性.
(1)可得f(0)•f(0)=f(0)
∵f(0)≠0
∴f(0)=1
又对于任意x∈R,f(x)=f(x/2+x/2)=[f(x/2)]²≥0又f(x/2)≠0,∴f(x)>0
(2)设x1,x2∈R且x1<x2,则f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2)=f(x2)[f(x1-x2)-1]
∵x1-x2<0
∴f(x1-x2)>f(0)=1
∴f(x1-x2)-1>0
对f(x2)>0
∴f(x2)f[(x1-x2)-1]>0
∴f(x1)>f(x2)故f(x)在R上是减函数