数列{an}前n项算数平均数为:2n+1
即数列{an}前n项的和为:n(2n+1)
即Sn=n(2n+1)
Sn=2n^2+n
S(n-1)=2(n-1)^2+n-1
=2n^2-4n+2+n-1
=2n^2-3n+1
an=Sn-S(n-1)
=2n^2+n-(2n^2-3n+1)
=2n^2+n-2n^2+3n-1
=4n-1
数列{an}前n项算数平均数为:2n+1
即数列{an}前n项的和为:n(2n+1)
即Sn=n(2n+1)
Sn=2n^2+n
S(n-1)=2(n-1)^2+n-1
=2n^2-4n+2+n-1
=2n^2-3n+1
an=Sn-S(n-1)
=2n^2+n-(2n^2-3n+1)
=2n^2+n-2n^2+3n-1
=4n-1