∵DE⊥BC,
∴∠BDE=90°-∠B=30°,
BD=2BE,
∴∠EDF=60°,同理∠DEF=60°,∠DFE=60°,
∴△DEF为等边三角形,故DE=DF=EF,
∵在△ADF和△CFE中,
∠A=∠C
∠CFE=∠ADF=90°
EF=DE ,
∴△ADF≌△CFE,同理△CFE≌△BED,
故△ADF≌△CFE≌△BED,
∴BD=AF,
∴BD=2AD,
故D点为线段AB的三等分点.
∵DE⊥BC,
∴∠BDE=90°-∠B=30°,
BD=2BE,
∴∠EDF=60°,同理∠DEF=60°,∠DFE=60°,
∴△DEF为等边三角形,故DE=DF=EF,
∵在△ADF和△CFE中,
∠A=∠C
∠CFE=∠ADF=90°
EF=DE ,
∴△ADF≌△CFE,同理△CFE≌△BED,
故△ADF≌△CFE≌△BED,
∴BD=AF,
∴BD=2AD,
故D点为线段AB的三等分点.