设λ1=-1,λ2=0是实对称矩阵A的特征值,α=(2,t+2,1),β=(1+t,-1,-2)是分别属于-1,1的特征
1个回答
实对称矩阵的属于不同特征值的特征向量正交
所以 2(t+1)-(t+2) -2 = 0
所以 t = 2
相关问题
设3阶矩阵A有特征值λ1=-1,λ2=λ3=1,对应的特征向量分别为α1=(1,-1,1)T,α2=(1,0,-1)T,
设3阶矩阵A的属于特征值λ1=1的特征向量是a1=(-1,1,1)T,属于特征值λ2=λ3的特征向量a2=(-1,1,0
设三阶十对称矩阵A的特征值为λ1=-1,λ2=λ3=1,对应于λ1的特征向量为α1=(0,1,1)^T,求属于特征值
已知α1=(1,-2,1)T,α2=(-1,a,1)T依次是三阶不可逆实对称矩阵 A的属于的特征值λ1=1,λ2=-1的
已知三阶实对称矩阵A的三个特征值为λ1=2,λ2=λ3=1,且对应于λ2,λ3的特征向量为:α2=(1,1,-1)^T
线性代数求解设向量α1=[1,2,1]T,α2=[1,1,2]T都是方阵A的属于特征值λ=1 的特征向量,又向量β=α1
设三阶对称矩阵A的特征值为1,-1,0而λ1和λ2的特征向量分别为(a,2a-1,1)^T,(a,1,1-3a)^T,求
求特征向量?A是三阶实对称矩阵,其特征值为λ1=3,λ2=λ3=5,λ1=3的线性无关特征向量为(-1 0 1)^T
线性代数:设三阶实对称矩阵A的特征值为λ1=-1,λ2=λ3=1,已知A的属于λ1=-1的特征向量为p1={0,1,1}
线性代数:设三阶实对称矩阵A的特征值为λ1=-1,λ2=λ3=1,已知A的属于λ1=-1的特征向量为p1={0,1,1}