∵a,b,c成等差数列
∴a+c=2b
根据正弦定理:
∴sinA+sinC=2sinB=4sinB/2cosB/2
∵ C-A=π/3
∴C=A+π/3,B=π-A-C=2π/3-2A
∴sinA+sin(A+π/3)=4sinB/2cosB/2
∴sinA+sinAcosπ/3+cosAsinπ/3
=4sinB/2cosB/2
∴3/2sinA+√3/2cosA=4sinB/2cosB/2
∴√3sin(A+π/6)=4sin(π/3-A)cos(π/3-A)
∴√3sin(A+π/6)=4sin(A+π/6)cos(A+π/6)
∴cos(A+π/6)=√3/4
∴sin(A+π/6)=√[1-cos²(A+π/6)]=√13/4
∴sinB=sin(A+C)=sin(2A+π/3)
=2sin((A+π/6)cos(A+π/6)
=2×√3/4×√13/4=√39/8
( 用和差化积更快些,但怕你没学)