设x,y,z为正实数,证明:
x^4+y^4+z^4-x^3*(y+z)-y^3*(z+x)-z^3*(x+y)+xyz(x+y+z)>=0
证明 设x=min(x,y,z),上式化简等价于
x^2*(x-y)*(x-z)+(y^2+z^2+yz-xy-xz)*(y-z)^2 ≥0
上式显然成立.证毕.
设x,y,z为正实数,证明:
x^4+y^4+z^4-x^3*(y+z)-y^3*(z+x)-z^3*(x+y)+xyz(x+y+z)>=0
证明 设x=min(x,y,z),上式化简等价于
x^2*(x-y)*(x-z)+(y^2+z^2+yz-xy-xz)*(y-z)^2 ≥0
上式显然成立.证毕.