对数运算已知log6(7)=a,log3(4)=b,求log14(21)

1个回答

  • 由题意:lg7/lg6=a lg4/lg3=b 所以lg3*b=lg4=2lg2

    将原式变形,得:lg21/lg14=(lg3+lg7)/(lg2+lg7)=(lg3+lg7)/(lg3*b/2+lg6*a)=[2lg3+2a(lg2+lg3)]/[lg3*b+2a(lg2+lg3)]=[(2+2a)lg3+2a*lg2]/[(b+2a)lg3+2a*lg2]=[(2+2a)2lg2/b+2alg2]/[(n+2a)2lg2/b+2alg2] =[(2+2a)/b+a]/[(b+2a)/b+a]=(2+2a+ab)/(b+2a+ab)

    ove