x^2/4+y^2/3=1……(1)
y=kx+m……(2)
联立(1)(2)可得 (3+4k^2)+8kmx+4m^2-12=0
可设A(x1,y1)B(x2,y2)
韦达定理:
(x1)+(x2)=(-8km)/(3+4k^2)
(x1)*(x2)=(4m^2-12)/(3+4k^2)
(y1)*(y2)=(kx1+m)(kx2+m)
=k^x1x2+mk(x1+x2)+m^2
=(3m^2-12k^2)/(3+4k^2)
因为 与椭圆相交于A,B两点(A,B不是顶点),以AB为直径的圆过(2,0).
所以设定点(2,0)为C点
向量AC*向量BC=0 即 [2-(x1)]*[2-(x2)]+(y1)(y2)=0,
4k^2+16m+7m^2=0
求出m与k的关系.即可知道过哪个定点.