设cos^2(x-y)-cos^2(x+y)=1/2,(1+cos2x)*(1+cos2y)=1/3,则tanxtany

2个回答

  • ∵cos^2(x-y)-cos^2(x+y)=1/2

    ==>[cos(x-y)+cos(x+y)][cos(x-y)-cos(x+y)]=1/2

    ==>(2cosxcosy)(2sinxsiny)=1/2 (应用和差角公式)

    ==>cosxcosysinxsiny=1/8.(1)

    (1+cos2x)*(1+cos2y)=1/3

    ==>(2cos²x)(2cos²y)=1/3 (应用倍角公式)

    ==>cos²xcos²y=1/12.(2)

    ∴由(1)式和()式,得tanxtany=(sinx/cosx)(siny/cosy)

    =(sinxsiny)/(cosxcosy)

    =(cosxcosysinxsiny)/(cos²xcos²y) (分子分母同乘cosxcosy)

    =(1/8)/(1/12)

    =3/2