f(x)=3/2sin2wx-√3(cos2wx+1)/2+2[1-cos(2wx-π/6)]/2+(√3)/2
=3/2sin2wx-√3/2cos2wx-cos(2wx-π/6)
=3/2sin2wx-√3/2cos2wx-√3/2cos2wx-1/2sin2w
=sin2wx-√3cos2wx
=2sin(2wx-π/3)
最小周期为=2π/2w=π w=1
f(x)=2sin(2x-π/3)
f(x)=3/2sin2wx-√3(cos2wx+1)/2+2[1-cos(2wx-π/6)]/2+(√3)/2
=3/2sin2wx-√3/2cos2wx-cos(2wx-π/6)
=3/2sin2wx-√3/2cos2wx-√3/2cos2wx-1/2sin2w
=sin2wx-√3cos2wx
=2sin(2wx-π/3)
最小周期为=2π/2w=π w=1
f(x)=2sin(2x-π/3)