(1/4)*(1/2)*[(1/n)-(1/(n+2)]=(1/8)[1/n - 1/(n+2)]
∴s=1/8[1/1 - 1/3 +1/2 - 1/4 +1/3 -1/5 +...+1/(n-1) - 1/(n+1) +1/n -1/(n+2)]
=1/8 *[1+ 1/2 -1/(n+1) -1/(n+2)]
=1/8 *[3/2 - 1/(n+1) -1/(n+2)]
(1/4)*(1/2)*[(1/n)-(1/(n+2)]=(1/8)[1/n - 1/(n+2)]
∴s=1/8[1/1 - 1/3 +1/2 - 1/4 +1/3 -1/5 +...+1/(n-1) - 1/(n+1) +1/n -1/(n+2)]
=1/8 *[1+ 1/2 -1/(n+1) -1/(n+2)]
=1/8 *[3/2 - 1/(n+1) -1/(n+2)]