高数题 求不定积分 ∫arctanx/(1+x)√xdx∫1/( 1+3√(1+x) )dx∫x^2/x^3+3 dx

2个回答

  • (1):反正切里面那个应该是√x而不是x,否则凑不到微分的.

    ∫ arctan√x/[(1 + x)√x] dx

    = 2∫ arctan√x/[(1 + x) * 2√x] dx

    = 2∫ arctan√x/(1 + (√x)²) d√x

    = 2∫ arctan√x d(arctan√x)

    = (arctan√x)² + C

    (2):令u = (1 + x)^(1/3),u³ = 1 + x,3u² du = dx

    ∫ 1/[1 + (1 + x)^(1/3)] dx,x开三次方 = x^(1/3)

    = ∫ 1/(1 + u) * (3u² du)

    = 3∫ u[(u + 1) - 1]/(1 + u) du

    = 3∫ u du - 3∫ u/(1 + u) du

    = (3/2)u² - 3∫ [(u + 1) - 1]/(1 + u) du

    = (3/2)u² - 3∫ du + 3∫ du/(1 + u)

    = (3/2)u² - 3u + 3ln|1 + u| + C

    = (3/2)(1 + x)^(2/3) - 3(1 + x)^(1/3) + 3ln|1 + (1 + x)^(1/3)| + C

    (3):这题可说能秒杀

    ∫ x²/(x³ + 3) dx

    = ∫ 1/(x³ + 3) d(x³/3)

    = (1/3)∫ 1/(x³ + 3) d(x³ + 3)

    = (1/3)ln|x³ + 3| + C