1/Sn=[2S(n-1)+1]/S(n-1)=2+1/S(n-1)
1/Sn-1/S(n-1)=2
所以1/Sn是等差数列
S1=a1=1
1/S1=1
1/Sn的d=2
1/Sn=1+2(n-1)=2n-1
Sn=1/(2n-1)
S(n-1)=1/(2n-3)
则n>=2时
an=Sn-S(n-1)=-2/[(2n-1)(2n-3)]
a1=1也符合
所以an=-2/[(2n-1)(2n-3)]
1/Sn=[2S(n-1)+1]/S(n-1)=2+1/S(n-1)
1/Sn-1/S(n-1)=2
所以1/Sn是等差数列
S1=a1=1
1/S1=1
1/Sn的d=2
1/Sn=1+2(n-1)=2n-1
Sn=1/(2n-1)
S(n-1)=1/(2n-3)
则n>=2时
an=Sn-S(n-1)=-2/[(2n-1)(2n-3)]
a1=1也符合
所以an=-2/[(2n-1)(2n-3)]