⑴证明:令xy=a,x=b故y=a/b,
故f(a)=f(b)+f(a/b)即
f(x/y)=f(x)-f(y)
⑵-12=-4+(-4)+(-4)=f(64)
f(x)-f(1/x-12)=f[x(x-12)]
又递减,故x(x-12)≦64
又有定义域知x>0,1/x-12>0
三个式子解得12<x≦16
⑴证明:令xy=a,x=b故y=a/b,
故f(a)=f(b)+f(a/b)即
f(x/y)=f(x)-f(y)
⑵-12=-4+(-4)+(-4)=f(64)
f(x)-f(1/x-12)=f[x(x-12)]
又递减,故x(x-12)≦64
又有定义域知x>0,1/x-12>0
三个式子解得12<x≦16