Sn = -n² + 7n
Sn₋₁ = -(n- 1)² + 7(n - 1) = -n² + 9n - 8
an = Sn - Sn₋₁ = (-n² + 7n) - ( -n² + 9n - 8) = 8 - 2n
f(x) = -x² + 7x = -x(x - 7)
此为以x = (0 + 7)/2 = 7/2为对称轴的抛物线,最大值f(7/2)
因为n是正整数,Sn在n = 3或4时取最大值,f(3) = (f(4) = 12
Sn = -n² + 7n
Sn₋₁ = -(n- 1)² + 7(n - 1) = -n² + 9n - 8
an = Sn - Sn₋₁ = (-n² + 7n) - ( -n² + 9n - 8) = 8 - 2n
f(x) = -x² + 7x = -x(x - 7)
此为以x = (0 + 7)/2 = 7/2为对称轴的抛物线,最大值f(7/2)
因为n是正整数,Sn在n = 3或4时取最大值,f(3) = (f(4) = 12