解题思路:首先证明通过线面垂直进一步证明所以BD⊥平面PAC,然后当△MBD的面积为最小时,只需OM最小即可,过O点作OM⊥PC,不影响线面的夹角.由于PA=AC=a,进一步求出结果,
连结AC,BD交于O,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,
所以:PA⊥BD
AC⊥BD.
所以BD⊥平面PAC
进一步求出:BM=DM
过O点作OM⊥PC于M,
当△MBD的面积为最小时,只需OM最小即可.
若PA=AC=a
所以:∠ACP=[π/4]
即为所求.
故选:B
点评:
本题考点: 直线与平面所成的角.
考点点评: 本题考查的知识要点:线面垂直的判定定理,线面夹角的应用,菱形的性质定理.属于基础题.