4.已知函数f(x)= (-2^x+a)/[2^(x+1)+b](a,b为实常数)

4个回答

  • (1)当a=b=1时,f(x)=(-2^x+1)/[2^(x+1)+1]

    f(-x)=[-2^(-x)+1]/[2^(-x+1)+1]

    =[-1/(2^x)+1]/[1/[2^(x-1)]+1]

    =[-1+(2^x)]/[2+(2^x)]

    假设f(x)是奇函数则

    f(-x)=-f(x) ==> [-1+(2^x)]/[2+(2^x)]=-(-2^x+1)/[2^(x+1)+1]

    ==> [-1+(2^x)]/[2+(2^x)]= [-1+(2^x)]/[2^(x+1)+1]

    ==> [2^(x+1)+1]=[2+(2^x)]

    ==> 2-1=2^(x+1)-2^x=(2^x)(2-1)

    ==> 2^x=0

    因为2^x=0显然不可能

    所以f(x)不是奇函数

    (2)由题意的

    f(-x) =-f(x)

    =>(-2^(-x)+a)/[2^(-x+1)+b]=-(-2^x+a)/[2^(x+1)+b]

    =>[-1+a(2^x)]/[2+b(2^x)]=(2^x-a)/[2^(x+1)+b]

    =>[a(2^x)-1]/[b(2^x)+2]=(2^x-a)/[2^(x+1)+b]

    =>a=1,b=2 (看出来的,别的方法一时想不到)

    (3)由(2)得

    f(x)= (-2^x+1)/[2^(x+1)+2]

    = [-(2^x+1)+2]/[2(2^x+1)]

    =-1/2+1/(2^x+1)

    因为2^x > 0

    所以2^x+1 >1

    => 1/(2^x+1) -1/2+1/(2^x+1)