(1)当a=b=1时,f(x)=(-2^x+1)/[2^(x+1)+1]
f(-x)=[-2^(-x)+1]/[2^(-x+1)+1]
=[-1/(2^x)+1]/[1/[2^(x-1)]+1]
=[-1+(2^x)]/[2+(2^x)]
假设f(x)是奇函数则
f(-x)=-f(x) ==> [-1+(2^x)]/[2+(2^x)]=-(-2^x+1)/[2^(x+1)+1]
==> [-1+(2^x)]/[2+(2^x)]= [-1+(2^x)]/[2^(x+1)+1]
==> [2^(x+1)+1]=[2+(2^x)]
==> 2-1=2^(x+1)-2^x=(2^x)(2-1)
==> 2^x=0
因为2^x=0显然不可能
所以f(x)不是奇函数
(2)由题意的
f(-x) =-f(x)
=>(-2^(-x)+a)/[2^(-x+1)+b]=-(-2^x+a)/[2^(x+1)+b]
=>[-1+a(2^x)]/[2+b(2^x)]=(2^x-a)/[2^(x+1)+b]
=>[a(2^x)-1]/[b(2^x)+2]=(2^x-a)/[2^(x+1)+b]
=>a=1,b=2 (看出来的,别的方法一时想不到)
(3)由(2)得
f(x)= (-2^x+1)/[2^(x+1)+2]
= [-(2^x+1)+2]/[2(2^x+1)]
=-1/2+1/(2^x+1)
因为2^x > 0
所以2^x+1 >1
=> 1/(2^x+1) -1/2+1/(2^x+1)