f(x)=a•b=(√3cos(x/4),cos²(x/4))•(2sin(x/4),2)
=2√3cos(x/4)sin(x/4)+2cos²(x/4)
=√3sin(x/2)+cos(x/2)+1
=2sin[(x/2)+π/6]+1,
所以,f(x)的最小正周期为T=2π/(1/2)=4π.
f(x)=a•b=(√3cos(x/4),cos²(x/4))•(2sin(x/4),2)
=2√3cos(x/4)sin(x/4)+2cos²(x/4)
=√3sin(x/2)+cos(x/2)+1
=2sin[(x/2)+π/6]+1,
所以,f(x)的最小正周期为T=2π/(1/2)=4π.