要都是非负数才成立 a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
因为 a b c非负 所以 a+b+c>=0 a^2+b^2+c^2-ab-bc-ac=1/2[(a-b)^2+
(b-c)^2+(c-a)^2]>=0 所以左边>=0
要都是非负数才成立 a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
因为 a b c非负 所以 a+b+c>=0 a^2+b^2+c^2-ab-bc-ac=1/2[(a-b)^2+
(b-c)^2+(c-a)^2]>=0 所以左边>=0