首页
作文
年级
一年级
二年级
三年级
四年级
五年级
六年级
字数
50字
100字
150字
200字
250字
300字
350字
体裁
日记
读后感
记叙文
抒情
写景
句子
造句
句子
俗语
标语
格言
横幅
问候语
美句
佳句
寄语
词句
祝福语
口号
谚语
广告语
条幅
宣传语
名言警句
名句
名言
语录
词典
问答
登录
证明:R为实数集,D是一个平面区域,f是一个连续函数,则f 不是一个常值映射当且仅当f(D)是R的一个区间
0
0
0
1个回答
首先说介值定理在联通区域上用没有问题,不知道你们老师怎么想的,太水了.
第二,参考资料中用了另一种证明,思想是拓扑学的,手法是数学分析的,你能看懂.
见参考资料
0
0
相关问题
证明:数集S在实数集R中稠密当且仅当每一个数x都是S中的序列的极限.
0
0
f是一个映射,f(X)=X^2,值域R={y|y>=0},为什么这个映射不是满射
0
0
设映射f:x→-x^2+2x是实数集R到实数集R的映射,若对于实数t∈R,t不存在原象,则t的取值范围是 ( ).
0
0
证明存在两个由实数集到实数集的映射f,g:R→R,使得f(g(x))单调递减,g(f(x))单调递增
0
0
如何证明f是满射设f:S—amp;gt;T是映射,证明:f是满射当且仅当不存在集合T到某个集合U的两个映射h1,h2:T
0
0
已知函数f(x)的定义域是实数集R,函数f(x+1)是奇函数,当x1,f(x)的递减区间?
0
0
函数f(x)是定义在R上的增函数,方程f(x)=0有一个实数根x0,则方程f(x)+1=0在区间------上有一个实数
0
0
一道数学逻辑题,急设A,B是两个非空集合,F是从A到B 的一个函数. 定义A的关系R如下: xRy当且仅当F(x)=F(
0
0
已知定义域为R的函数F(x)满足F(F(x)-x²+x)=F(x)-x²+x.设有且仅有一个实数X.
0
0
已知周期为2的偶函数f(x)的定义域是实数集R,且当x∈[0,1]f(x)=log2(2-x),则当x∈[2007,20
0
0