设AB=c,AC=b,BC=a
过B作AC垂线BD,过A做BC垂线AE
Sabc=AC*BD/2=(b*c√3/2)/2=6√3 ==>bc=24
sinB:sinC=(AE/AB):(AE/AC)=AC/AB=b:c=3:2
==> b=1.5c
解得c=4
b=6
设AB=c,AC=b,BC=a
过B作AC垂线BD,过A做BC垂线AE
Sabc=AC*BD/2=(b*c√3/2)/2=6√3 ==>bc=24
sinB:sinC=(AE/AB):(AE/AC)=AC/AB=b:c=3:2
==> b=1.5c
解得c=4
b=6