解题思路:(1)分子为1,分母为相邻2个数的积,结果等于分子为1,分母分别为2个因数的分数的差;
(2)化简后,只剩首尾两个数,相减即可;
(3)分子为1,分母为相差2的2个数的积,结果等于分子为1,分母分别为2个因数的分数的差,再乘以[1/2],进而按照(2)得到的规律,计算即可;
(1)[1
n(n+1)=
1/n]-[1/n+1];
故答案为[1/n]-[1/n+1];
(2)原式=1-[1/50]=[49/50];
故答案为[49/50];
(3)原式=(1-[1/3]+[1/3]-[1/5]+…+[1/2007]-[1/2009])×[1/2]
=(1-[1/2009])×[1/2]=[2008/2009]×[1/2]
=[1004/2009].
点评:
本题考点: 规律型:数字的变化类.
考点点评: 考查数字的变化规律;得到分子为1,分母为等差数列的几个分数的和的计算方法是解决本题的关键.