(1)
证明
∵CD//AB,
∴∠CDE=∠AFE,(内错角相等).
∠DEC=∠AEF,(对顶角相等),
∵E是AC的中点,
∴AE=CE,
∴△CED≌△AEF,(ASA),
∴FE=DE,
∴E是DF的中点.
(2)
∵△CED≌△AEF
∴AF=CD=3
∴AB=AF+FB=3+3=6
(1)
证明
∵CD//AB,
∴∠CDE=∠AFE,(内错角相等).
∠DEC=∠AEF,(对顶角相等),
∵E是AC的中点,
∴AE=CE,
∴△CED≌△AEF,(ASA),
∴FE=DE,
∴E是DF的中点.
(2)
∵△CED≌△AEF
∴AF=CD=3
∴AB=AF+FB=3+3=6