由题意可得,
lim
n→∞
n
k=2 (1-[1
k2)=
lim
n→∞
n/
k=2] (
k2−1
k2=
lim
n→∞
n
k=2 ([k−1/k•
k+1
k])
=
lim
n→∞[(
1
2×
2
3×…×
n−1
n)×(
3
2×
4
3×…×
n+1
n)]
=
lim
n→∞([1/n×
n+1
2])=
lim
n→∞[n+1/2n]=
lim
n→∞
1+
1
n
2=[1/2]
故选B
由题意可得,
lim
n→∞
n
k=2 (1-[1
k2)=
lim
n→∞
n/
k=2] (
k2−1
k2=
lim
n→∞
n
k=2 ([k−1/k•
k+1
k])
=
lim
n→∞[(
1
2×
2
3×…×
n−1
n)×(
3
2×
4
3×…×
n+1
n)]
=
lim
n→∞([1/n×
n+1
2])=
lim
n→∞[n+1/2n]=
lim
n→∞
1+
1
n
2=[1/2]
故选B